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A knowledge-based potential scoring function, named M-Score, has been developed based upon 2331 high-
resolution crystal structures of protein-ligand complexes. M-Score considers the mobility of protein atoms,
describing the location of each protein atom by a Gaussian distribution instead of a fixed position based
upon the isotropicB-factors. This leads to an increase in the number of atom-pairs in the construction of
knowledge-based potentials and a smoothing effect on the pairwise distribution functions. M-Score was
validated using 896 complexes which were not included in the 2331 data set and whose experimentally
determined binding affinities were available. The overall linear correlation coefficient (r) between the
calculated scores and experimentally determined binding affinities (pKi or pKd) for these 896 complexes is
-0.49. Evaluation of M-Score against 17 protein families showed that we obtained good to excellent
correlations for six protein families, modest correlations for four protein families, and poor correlations for
the remaining seven protein families.

Introduction

Scoring functions play an important role in virtual database
screening aimed at the discovery of lead molecules and in
structure-based lead optimization.1,2 In current scoring function
development, the following three different approaches are
commonly used: force field-based functions,3,4 empirical func-
tions,5,6 and knowledge-based potential functions.7-13 Force
field-based scoring functions take advantage of atomic force-
field parameters developed for molecular mechanics calculations
and molecular dynamics simulation.3,4 Empirical scoring func-
tions divide the binding free energy into several physical terms
and determine the weight of each term by regression analysis
using a training set containing experimentally determined
binding affinity data of protein-ligand complexes.5,6 Knowledge-
based scoring functions have recently emerged as a new
approach,7-13 in which statistical atomic distances between
protein atoms and ligand atoms are used to calculate atom pair
distributions. When compared to a reference state using a
Boltzman form equation, a “free energy” term is derived to
describe each atom-pair interaction. The summation of all atom-
pair interactions is then used to assess the overall strength of
interaction for each protein-ligand complex. Several such
scoring functions have been developed, which include PMF,7

BLEEP,8,9 Drugscore,10 SMoG,11,12 and DFIRE.13

One unique aspect in the development of knowledge-based
scoring functions is that they do not rely on regression to retrofit
experimentally determined binding affinity data, in contrast to
force field-based and empirical scoring functions. In addition,
the many-body interactions in protein-ligand complexes, which
are difficult to describe in traditional force field-based scoring
functions, are embedded in the structural data used to generate
the knowledge-based potential functions. Major deficiencies of
current knowledge-based scoring functions include an insuf-
ficient number of complex structures used to derive atom pair
distributions and the lack of a well-defined reference state. A
common major shortcoming in all the current scoring functions
published to date is that only a single conformation of a protein

is used, i.e., the protein structure is treated as a rigid body and
protein flexibility is ignored.

In our continuing efforts to construct the PDBbind data-
base,14,15we have recently compiled from the Protein Data Bank
(PDB)16 a set of 3227 protein-ligand complex structures whose
resolutions are better than 2.5 Å. Motivated by the availability
of this large data set of high-resolution experimentally deter-
mined crystal structures, we have now developed a new
knowledge-based potential scoring function with better statistics
for the derived atom-pair distributions and with an attempt to
account for protein atom mobility to overcome some of the
major deficiencies in the current knowledge-based scoring
functions.

In crystal structure determination, protein atom mobility may
be modeled via the atomicB-factor (or the temperature factor),
which includes thermal fluctuation and uncertainty of fitting
one average structure to multiple conformers. Although a term
called “atomic displacement parameters” has been used to
describe more accurately other structural information incorpo-
rated into theB-factor, an analytical model is used to fit atoms
into the electron density maps where each atom is assumed to
move harmonically.17,18 The probability of observing an atom
away from its most probable position is approximated by a
Gaussian distribution as determined by theB-factor. Upon the
basis of the atomicB-factor data available from crystal structures
in the PDB, we can incorporate the probabilistic positions of a
protein atom away from its mean position directly into our
knowledge-based scoring function development, which is
consistent with the statistical nature of the knowledge-based
potential scoring function.

In this study, we divided the data set of 3227 structures into
two sets. The first set consists of 2331 protein-ligand complex
structures, whose experimental binding affinities were not
available. The first data set was used to develop a new
knowledge-based potential scoring function, which we named
M-Score, into which the mobility of protein atoms is incorpo-
rated. In addition, a new atom typing scheme distinguishing
the side chain and main chain atoms of the proteins was
developed and used, and three atom typing schemes for ligands
were evaluated. The second set contains 896 protein-ligand
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complexes with experimentally determined binding affinity data
and was used for validation of M-Score.

Methods

The Data Set. A total of 3227 protein-ligand complexes
determined by the X-ray crystallography obtained from our PDB-
bind database14,15 were used in this work. The selection criteria
were reported recently.15 Briefly, these 3227 complexes meet the
following criteria: (a) there is no covalent bond formed between
protein and ligand; (b) no more than one ligand is bound to the
binding site of the protein; (c) ligands contain only common organic
elements (i.e. H, C, O, N, S, P and halogens) and have a molecular
weight of less than 1000 or less than 10 amino acid residues; (d)
the resolution of each complex is better than 2.5Å. Of these 3227
complexes, experimentally measuredKi or Kd values of 896
complexes had been retrieved from the literature15 and were used
as the validation data set. The structures of the remaining 2331
complexes were used for the development of M-Score.

We used pK to denote experimentally determined binding affini-
ties (-log Ki or -log Kd) and did not attempt to make a distinction
between them.Kd is a direct measure of the binding affinity between
a protein and a ligand, whereasKi is calculated from the IC50 value
determined in a competitive binding experiment based on a
competitive kinetic model. Because M-Score is not regression-
based, theseKi or Kd values would not affect the knowledge-based
potentials in the scoring function nor the predictive power of
M-Score. Experimentally determinedKi or Kd values for these 896
complexes were only used in the evaluation of M-Score.

Determination of the protonation state of atoms requires careful
experimental studies, and such information was not always available
when binding affinity was reported. Therefore, in both scoring
function construction and validation, protonation states of atoms
in proteins and ligands are assigned according to physiological pH
value of 7.4.

Atom Typing. A new atom typing scheme was developed for
protein atoms (Table 1). This new atom typing scheme considers
both bond orders and atomic polarity, and distinguishes between
side chain and backbone atoms. A total of 19 different atom types
are defined for protein atoms. For ligand atoms, we used the Tripos
Mol2 atom types19 and a total of 21 atom types are used in our
study for ligand atoms (Table 2). We have also evaluated the two
atom typing schemes used in Drugscore10 and in the PMF scoring
function by Muegge and Martin7 for comparison purposes.

Atomic Mobility Based upon the Gaussian Approximation.
The atomicB-factors obtained from the crystal structure determi-
nation correspond to the magnitude of the thermal atomic motion
in crystals. When the structure is determined with very high
resolution, the anisotropic motion of each atom can be resolved
through refinement procedures to reveal specific directions and
magnitudes of the atomic motion. Because the determination of

Table 1. New Atom Types for the Protein Atoms Used in This Work

atom type description

1 CR or Ca R carbon
2 C(bk) backbone carbonyl carbon
3 Câ or Cb â carbon
4 C.3(sch) side chain sp3 carbon
5 C.2(N,Q) side chain sp2 carbon (N,Q)
6 C.2(E,D) side chain sp2 carbon (E.D)
7 C.cat(R) charged carbon in R
8 C.ar carbon in aromatic system
9 N.am backbon amidic nitrogen
10 N.ar(W,H) nitrogen in aromatic system (W,H)
11 Npolar(N,Q) polar and uncharged nitrogen (N,Q)
12 N.4(R,K) charged nitrogen atom (R,K)
13 O(bk) backbone carbonyl oxygen
14 O.co2 carboxylic charged oxygen
15 O(polar) polar and not charged oxygen
16 O.2(N,Q) carboxylic uncharged oxygen (N,Q)
17 S(M) sulfur atom in Met
18 S(C) sulfur atom in Cys
19 Metal metal ions
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the anisotropicB-factor requires both additional human effort in
the structure refinement procedures and very high quality of crystals,
it is not commonly adopted in the X-ray structure determination.
Therefore, we used the isotropicB-factor available in a typical PDB
file in our implementation, where each atom is assumed to vibrate
isotropically.

The B-factors determined from the electron density map from
X-ray diffraction assume that each atom vibrates harmonically
around an average position in space. The harmonic approximation
leads to a Gaussian probability distribution of observing the atom
in space with theB-factor defined asB ) 8π2 〈u2〉 and the Gaussian
distribution function defined as19

where〈u2〉 is the mean square displacement in one-dimension of

the atomic position andσ ) xB/8π2 is the width of the Gaussian
distribution. Using eq 1, we can assign the probability of observing
an atom around its mean position due to the thermal motion by the
B-factor and incorporate it into our knowledge-based potential
scoring function. The difference between our implementation and
the conventional knowledge-based method is that we include the
spatial distribution of each atom around the mean position based
on theB-factor characterized by a Gaussian distribution in real
space, whereas conventional knowledge-based potential includes
a single position for each protein atom in space with 100%
probability.

In our implementation, five Gauss-Legendre quadrature points20

within a range of(σ from the atomic mean position are used to
represent the probability distribution of each atom and the sum of
total probability accounts for 0.895. Although probability of evenly
spaced points can be used, the Gauss-Legendre quadrature was
shown to approximate the probability density more accurately than
the same number of evenly spaced points.21

Inclusion of the Atomic Mobility of Proteins in Knowledge-
Based Potential. We modified the knowledge-based potential
function used in Drugscore10 to include the atomic mobility of
proteins. A normalized distance-dependent pair distribution function,
gi,j(r), between atom typei and atom typej is calculated as follows

whereNw
i,j is the weighted occurrence with a distance fromr to

r+dr between atom pairsi andj and is defined as a sum of weighted
delta functions:

wherer ι
µ is the mean position of protein atomµ (type i), un is the

deviation of protein atomµ from its mean position,n is the number
of atomic position of protein atomµ included, pµ (un) is the
probability of observing protein atomµ at un according to eq 1,
and r j

ν is the mean position of ligand atomν (type j).
Although the same probability function can be applied for ligand

atoms, multiplication of positional probability of a protein atom
with that of a ligand atom will lead to unrealistically close distances
between protein and ligand atoms and clashes. To avoid such a
situation, only positional probability of protein atoms is considered
in the current implementation.

Here, the bin size of dr equal to 0.1 Å is used, and the Boltzman-
like scoring function (FSC) is calculated as follows:

whereg(r) is the average ofgi,j (r) [defined in eq 2] over pairs of
all different atom types separated by a distance ofr. The cutoff
distance for calculatinggi,j (r) and the scores is a variable. We have
tested cutoff distances of 6, 10, and 12 Å between protein and ligand
atoms in our current study. Only non-hydrogen atoms are consid-
ered, and metal ions are treated as part of the protein. If the total
number of occurrences of an atom pair between proteins and ligands
from the whole data set is less than 100, the interaction of this
particular atom pair is considered to be statistically insignificant
and the corresponding scoring potential is set to zero.

Results and Discussion

Statistics of Atom Pairs Derived from the 2331 Protein-
Ligand Complexes.The number of atom pairs derived from
these 2331 protein-ligand complexes depends on the atom
typing scheme and the cutoff distance, both of which will affect
the derived potentials. An ideal design for an atom typing
scheme should result in a statistically significant number for
each atom pair. Proteins only contain 20 different amino acids,
and there are a limited number of atom types. In contrast, small-
molecule ligands have very diverse chemical structures and in
theory contain far more atom types than are in proteins. In Figure
1, we display the number of atom pairs in our scoring function
construction using the atom typing scheme defined in Table 1
for proteins and either the Tripos Mol2 atom types19 or the atom
types of PMF7 for ligands. Results using either the Mol2 atom

p(u) ) (2π 〈u2〉)-3/2 exp(- 1
2

u2

〈u2〉) )

( B
4π)-3/2

exp(- 1
2

8π2u2

B ) ) (2πσ2)-3/2 exp(- 1
2

u2

σ2) (1)

gi,j(r) )
Nw

i,j(r)/4πr2

Σ k,lN
w

k,l(r)/4πr2
(2)

Nw
i,j(r) ) Σ µΣ ν[∑

n

pµ(un)‚δ( rbi
µ - rbj

ν| + un - r)] (3)

FSC ) -ln
gi,j(r)

g(r)
, g(r) )

Σ i,jgi,j(r)

i* j
(4)

Figure 1. Total counts of distances in atom pairs for (a) each protein
atom and (b, c) each ligand atom using cutoff distances of 6 (shaded
bars) and 10 Å (solid bars). The atom type for the protein is defined in
Table 1. The atom types for the ligands in b and c are the atom types
of Mol2 and PMF.
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types or the atom types of PMF7 for both proteins and ligands
are provided in the Supporting Information.

If we use 6 Å as thecutoff distance for calculation of atom
pairs between proteins and ligands, each protein atom type has
more than 1000 atom pairs with ligand atoms, with the highest
number being 100 000 (shaded bars in Figure 1a). As expected,
there are fewer atom pairs that involve either a sulfur atom or
metal ions in proteins. When the cutoff distance is set to 10 Å,
the number for each atom pair is increased. However, the relative
percentage increases in the atom pairs involving backbone
protein atoms are somewhat higher than those involving protein
side chain atoms and metal ions.

For ligand atom types, we found that the numbers of atom
pairs involving C.1, C.cat, N.3, N.1, S.o, S.o2, and halogen
atoms in ligands are lower than the numbers of atom pairs
involving other atom types by 1-2 log units (Figure 1b). When
the cutoff distance is 6 Å, the numbers of two atom pairs
involving C.1 and N.1 atom types in ligands are fewer than
1000. When the cutoff distance is set to 10 Å, the numbers for
these two atom pairs improve to greater than 1000, although
they are still significantly smaller that those for other atom pairs.

In the scoring potential function calculation, the counts for
each atom pair determine the pairwise distribution function.
When using the Tripos Mol2 atom types for ligands with a cutoff
distance of 10 Å, and our atom typing scheme for proteins, the
numbers are greater than 10 000 for 119 atom pairs between
protein and ligand atoms, between 1000 and 10 000 for 141
atom pairs, below 1000 for the remaining 139 different atom
pairs (Table 2). The relative percentages are 30, 35, and 35%,

respectively, out of a total of 399 atom pairs between proteins
and ligands. In comparison, when the 29 atom types of PMF
are used for ligands, the counts are greater than 10 000 for 154
atom pairs between protein and ligand atoms, between 1000
and 10 000 for 170 atom pairs, below 1000 for 227 different
atom pairs (Table S1). Their relative percentages are 28, 31,
and 41%, out of a total of 551 atom pairs between proteins and
ligands. By comparing these two atom typing schemes, the PMF
atom typing yields a higher percentage of atom pairs with the
number of counts less than 1000. Atom pairs, whose counts
are less than 1000, will be referred to as rare atom pairs.

Analysis of the Pairwise Distribution Functions and
Potentials.A difference between our new atom typing scheme
for proteins and those used previously is the distinction between
side chain and backbone atoms. To evaluate if this distinction
is important, we have analyzed the pairwise distribution
functions and potentials obtained from these 2331 protein-
ligand complexes. To exclude the potential influence of the
atomic mobility, we generated the pairwise distribution functions
and potentials without inclusion of the atomicB-factors.

It was found that pairwise distribution functions between CR,
Câ, and C.3(sch) (all are sp3 carbon atoms for proteins) and
C.3 from ligands have different shapes (Figure 2). The differ-
ences among them are more pronounced when the atomic
separation is greater than 7 Å. With respect to the potentials
for these atom pairs, there is a clear, albeit shallow, attractive
potential well between C.3(sch) and C.3, which is not observed
between CR and C.3, and between Câ and C.3. This may be
due to the fact that C.3(sch) atoms have a higher probability

Figure 2. Examples of pairwise distribution functions and knowledge-based free energy potential functions for nonpolar and polar interaction
using Tripos Mol2 atom types for ligands. Black line: Rigid protein model; red line:B-factor augmentation; blue line: reference state.
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directly interacting with ligands than the CR or Câ protein
atoms, which are often shielded by protein side chain atoms.
Hence, side chain and backbone atoms in proteins with the same
bond order could have different knowledge-based potentials,
suggesting the importance in making the distinction between
them.

For the interaction between polar atoms, sharper peaks, such
as those in the pair distributions of N.4-O.co2 and N.am-O.co2,
are typically found (Figure 2). These sharper peaks correspond
to deeper attractive potentials among these atom pairs. Interest-
ingly, two potential wells, at around 2.8 Å and 5 Å, are found
between the nitrogen atom and the O.co2. The well at shorter
separation is deeper when the nitrogen (N.4) is charged,
indicating that salt bridge interaction is generally stronger than
a neutral hydrogen bond interaction. The potential between O.bk
and N.4, however, shows only one potential well at a typical
hydrogen bond distance (2.8Å).

Influences of Inclusion of the Atomic Mobility of Protein
Atoms on Pairwise Distribution Functions and Potentials.
We next analyzed the influences of inclusion of the atomic
mobility of protein atoms on pairwise distribution functions and
potentials.

As indicated in Methods, a Gaussian distribution based upon
the isotropicB-factors available in crystal structures of protein-
ligand complexes is used to describe the statistical probability
of each protein atom instead of a fixed position. As can be seen,
the pairwise distribution functions, including the atomic mobility
of protein atoms (red lines in Figure 2), closely trace the path
of those without inclusion of the atomic mobility of protein
atoms (black lines in Figure 2), but in much smoother fashion.
Of note, since the atomicB-factors used in our implementation
contain information of local atomic environment, it is different
from the running average or a triangular weighting as imple-
mented in BLEEP8 and Drugscore,10 where each atom is treated
equally.

In addition to the smoothing effect, the shapes of pairwise
distribution functions for polar atom pairs show significant
changes. For example, without inclusion of protein atomic
mobility, sharp peaks are observed for the pairwise distribution
functions among polar atom pairs at short distances and inclusion
of protein atomic mobility leads to much smoother peaks in
each case (Figure 2i-m).

Inclusion of protein atomic mobility also yields a less
repulsive potential among the nonpolar interactions. For ex-
ample, the repulsive part of the potential for distances less than
4 Å shifts to a closer separation in Figure 2e-h. The effects on
polar interaction are more dramatic in three aspects: (1) the
potentials become less repulsive and the potential wells are less
deep; (2) the minimum of the potential shifts by about 0.2 Å to
a closer separation; and (3) more pronounced repulsive potentials
at a very close separation not seen in the single protein
conformation model are now observed. For both nonpolar and
polar interactions, the shapes of the potentials at long ranges
(greater than 4 Å) are smoother but otherwise are generally not
affected.

Interestingly, inclusion of theB-factor in our knowledge-based
potentials resembles the strategies to soften the interaction
potentials used by Ferrari et al.22 and Stahl et al.23 in their
docking studies. They introduced empirical parameters to soften
the interaction potentials to account for receptor flexibility when
performing docking simulations. Although beyond the scope
of the current study, it will be very interesting to test the
effectiveness of our current scoring function in docking studies.

Evaluation of M-Score against 896 Protein-Ligand Com-
plexes. We evaluated M-Score using 896 protein-ligand
complexes, whose experimentally determined binding affinities
are available from our PDBbind.14,15

For these 896 protein-ligand complexes, their high-resolution
crystal structures have been determined.15 Therefore, for the
prediction of binding affinities for these 896 protein-ligand

Figure 3. Correlation of the scores with experimental binding affinity data for the 896 complexes test set. Results of the scoring function based
on new protein atom types and Mol2 atom types for the ligands are in (a) using cutoff) 6 Å, (b) using cutoff) 10 Å, (c) using cutoff) 10 Å
and B-factor-augmented scoring function. Results of the scoring function based on new protein atom types and the atom types of PMF for the
ligands using cutoff) 10 Å are in part d. Note that the scale of they-axis in part (a) is different from those in (b), (c), and (d). In all, red lines are
the correlation line fit and blue lines are 60% confidence lines.
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complexes, the protein atom mobility information as quantified
by the atomicB-factors could be included in the calculations
of scores using the M-Score program. However, in a practical
drug design project, such information is not available until the
designed ligand is synthesized and a high-resolution crystal
structure of protein-ligand complex is determined. For this
reason, our current evaluation of M-Score used a single protein

conformation based upon the protein-ligand complex coordi-
nates available from the PDBbind database for these 896
protein-ligand complexes.

In Figure 3, we showed the correlation between the experi-
mental binding affinity data of these 896 complexes and the
scores calculated from M-Score based on our atom types for
proteins and the Tripos Mol2 atom types for ligands.

Cutoff distances varying from 6 to 12 Å for the pair potential
functions have been used previously by different groups.7,8,10,11,13

Generally, there is a tradeoff between speed and performance
with different cutoff distances. In our case, when the cutoff
distance is increased from 6 Å to 10 Å, thelinear correlation
coefficient (r) improves slightly from-0.44 to -0.48 (cf.
Figures 3a and 3b). Perhaps more significantly, a steeper slope
for the correlation line is observed. This corresponds to a wider
spread in scores for protein-ligand complexes and could make
the scoring function more effective for differentiating protein-
ligand complexes with similar binding affinities. These results
suggest that the longer range interactions between 6 Å to 10 Å
are important for some protein-ligand complexes in our diverse
validation data set. However, increase of the cutoff distance
from 10 Å to 12 Å had no significant effect on the correlation
coefficient or the slope (data not shown).

Surprisingly, inclusion of protein atomic mobility in the
scoring function only improved slightly the overall linear
correlation coefficient (r) between the scores and experimental
binding affinities for these 896 structurally diverse protein-
ligand complexes (Figure 3b versus Figure 3c).

Our recent study24 has shown that when a set of 800 protein-
ligand complexes was employed to test the predictive power of
14 scoring functions, all of them produced poor to modest
correlations between the calculated scores and experimental

Table 3. Performance of the Current Scoring Function against Different
Protein Families in Correlating Scores and Experimentally Determined
Binding Affinities. Only the protein family (wild type or mutants) with
at Least Ten Protein-Ligand Complexes from the Test Set Are Included
in This Analysis

linear correlation coefficient (r)

protein names

numbers
in the

data set
this work
+ Mol2

this work
+ Mol2

+ B-factor
this work

+ Muegge

FK506 binding protein 10 -0.92 -0.92 -0.91
thermolysin 12 -0.83 -0.83 -0.83
trypsin 63 -0.76 -0.74 -0.71
urokinase-type
plasminogen activator

14 -0.75 -0.78 -0.69

tyrosine phosphatase 27 -0.72 -0.71 -0.69
neuraminidase 12 -0.65 -0.70 -0.69
ribonuclease T1, A 13 -0.60 -0.62 -0.61
thrombin 37 -0.55 -0.55 -0.53
carbonic anhydrase II 39 -0.54 -0.54 -0.54
antibody Fab fragment 31 -0.52 -0.51 -0.52
protocatechuate
3,4-dioxygenase

10 -0.49 -0.41 -0.67

HIV-1, HIV-2 protease 79 -0.43 -0.43 -0.43
oligopeptide
binding protein

28 -0.36 -0.38 -0.36

tyrosine kinase 12 -0.32 -0.34 -0.34
endothiapepsin 15 0.08 0.07 0.12
coagulation Factor X, Xa 15 0.20 0.18 0.33
streptavidin 21 0.48 0.46 0.40
average over 17 families
of proteins

438 -0.452 -0.456 -0.451

Figure 4. Examples: (a) HIV-1/-2 inhibitor (the largest single protein family set in current data set), (b) FK506-binding protein (the best case),
(c) streptavidin (the worst case), (d) neuraminidase (slight improvement withB-factor augmentation), (e) tyrosine kinase (protein family phosphorylating
specific tyrosine residues), and (f) tyrosine phosphatase (protein family removing phosphate groups from tyrosine residues). Results here are from
the B-factor-augmented scoring function. The Tripos Mol2 atom type is used for ligands.
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binding affinity data. It was found that the apparent disappoint-
ing results were primarily due to very large errors for a relatively
small number (5%) of protein-ligand complexes.24 We also
found that M-Score was unable to predict the binding affinities
for a small-percentage of protein-ligand complexes and pro-
duced very large errors for these outliers (Figure 3c).

When the atom types of PMF are used for ligands, the linear
correlation coefficient (r) between the scores and experimental
binding affinity is the same as that obtained when the Tripos
Mol2 atom types are used (Figure 3d). Interestingly, comparison
of the scatter plots between Figures 3b and 3d indicates that
several overestimated cases with pK values from 6 to 11 become
less problematic when the atom types of PMF are used for
ligands.

Performance of the Scoring Function on 17 Protein
Families. In structure-based lead discovery and optimization,
one is often interested in the performance of a scoring function
for its predictive power for the relative binding affinities of
ligands bound to the same protein, or proteins in the same
family. For this purpose, we evaluated M-Score against 17
protein families from the 896 protein-ligand complexes (Table
3). Each protein family consists of at least 10 different protein-
ligand complexes. Proteins in each family may include the native
and mutated forms.

We found that M-Score performs well for 6 of the 17 protein
families with a linear correlation coefficient (r) varying between
-0.70 and-0.92. These protein families include FK506 binding
proteins, thermolysin, trypsin, tyrosine phosphatase, urokinase-
type plasminogen activator, and neuraminidase. Our scoring
function performs modestly well for 4 other protein families
with a linear correlation coefficient (r) varying between-0.51
and-0.62. Among these 17 protein families, HIV-1/-2 proteases
contain the largest number of protein-ligand complexes (79
entries) and the linear correlation coefficient (r) is -0.43,
comparable to that for the overall data set. M-Score performs
extremely poorly for coagulation factor X(Xa), endothiapepsin,
and streptavidin with no or even anti-correlation.

With inclusion of theB-factor in the scoring function, the
linear correlation coefficients (r) are the same or slightly
improved in 9 out of the 17 protein families for two different
atom typing schemes listed in Table 3. However, inclusion of
theB-factor in the scoring function did not significantly improve
those poorly predicted cases. Scoring functions using certain
atom typing schemes may perform significantly better than
others for specific protein families. For example, scoring
functions using the atom types of PMF for ligands perform
significantly better than those using the Mol2 atom typing
scheme for ligands bound to protocatechuate 3,4-dioxygenase.

Figure 5. Outlier analysis: The analysis is based on results of M-Score. The rare atom pairs are those with less than 1000 distances in atom pairs
in Table 3. Removing the under- (up-triangle) and overestimate (down-triangle) cases increases the linear correlation coefficient (r) from -0.49 to
-0.64. 768 complexes are in the included region.
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Interestingly, our current scoring function yields different
performance for tyrosine kinase and tyrosine phosphatase. While
good correlations are observed for tyrosine phosphatase com-
plexes regardless which atom typing schemes are used (Table
3), poor correlations are found for tyrosine kinase complexes.
Examples of the scatter plots for HIV-1/-2 proteases, FK506-
binding protein, streptavidin, neuraminidase, tyrosine kinase,
and tyrosine phosphatase are shown in Figure 4.

Analysis of the Under- and Overestimated Cases.To
identify factors contributing to the extremely poorly performing
cases in the 896 complexes, we defined the under- and
overestimated cases with predicted errors greater or less than 2
standard deviation (2σ). This led to the identification of 77
overestimated and 51 underestimated cases, representing 14%
of the total complexes.

The 77 overestimated cases include 5 in MHC class I proteins,
39 in HIV-1/-2 proteases, and 7 in endothiapepsin. The 51
underestimated cases include 8 in streptavidin, 3 in thrombin
proteins, 9 in coagulation factor X/Xa, and 8 in carbonic
anhydrase II proteins. Not surprisingly, by excluding the under-
and overestimated cases, the linear correlation coefficient (r)
improves significantly from-0.48 to-0.64 for the remaining
768 complexes (Figure 5, top panel).

The number of rotable bonds for ligands is related to the
conformational entropy penalty associated with complex forma-
tion. Since the number of rotable bonds for ligands is not
included in M-Score, we evaluated if it plays a role for these
under- and overestimated cases. Since knowledge-based poten-
tial scoring functions rely on statistics, we also evaluated if rare
atom pairs between proteins and ligands contribute to these
outliers.

The rotable bonds for ligands were calculated using X-Score.6

Indeed, overestimated cases on average have a larger number
of rotable bonds than underestimated cases or complexes with
predicted errors less than 2σ (Figure 5, middle panel). Thus,
inclusion of ligand conformational entropy penalty incurred upon
complex formation may improve the correlation for those
overestimated cases.

One of the deficiencies in the knowledge-based potential
scoring function is the insufficient number of certain atom pairs
to generate their pairwise distribution functions and thereby their
interaction potentials. Although 2331 protein-ligand complexes
were used in the development of M-Score, 35% of the atom
pair potentials were built by less than 1000 of the atom pairs,
which may be considered as rare atom pairs. Although these
rare atom pair interactions typically account for less than 10%
of the total atom pair interactions for each complex (Figure 5,
bottom panel), they may still be highly significant. Thus, using
an even larger data set of protein-ligand complexes with diverse
chemical structures of ligands to increase the number of these
rare atom pairs may improve the performance of M-Score.

Summary

A new knowledge-based potential scoring function, which
we named M-Score, was developed using 2331 crystal structures
of protein-ligand complexes with resolution better than 2.5 Å.
In M-Score, a Gaussian distribution based upon the isotropic
B-factors available in crystal structures of protein-ligand
complexes is used to describe the positional statistical probability
for each protein atom instead of a fixed position. This leads to
a more realistic representation of distance distribution for each
atom pairs as compared to the use of a single, fixed distance
when constructing knowledge-based potentials and a smoothing
effect on the pairwise distribution functions. M-Score is

validated using 896 complexes whose experimentally determined
binding affinities were available and not included in the 2331
data set. The overall linear correlation coefficient (r) between
the calculated scores and experimentally determined binding
affinities (pKi or pKd) for the 896 validation data set is-0.49.
Evaluation of M-Score against 17 protein families showed that
good to excellent correlations were obtained for 6 protein
families, the FK506 binding protein, neuraminidase, thermolysin,
trypsin, tyrosine phosphatase, and urokinase-type plasminogen
activator, with linear correlation coefficients (r) between-0.70
and-0.92. This indicates that M-Score can be used to predict
the relative binding affinities of ligands to the same protein target
for some protein families. However, there were poor correlations
between the calculated scores and experimentally determined
pK values for 7 protein families, including the coagulation factor
X/Xa, endothiapepsin, and streptavidin. Analysis of those under-
and overestimated cases suggested that neglect of the ligand
conformational entropic changes upon binding, and insufficient
statistics for rare atom pair interactions, may be some of the
deficiencies in M-Score.
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